グラウンドアンカーの新しい定着設計方法

グラウンドアンカー	アンカー定着	自由長摩擦	弘和産業㈱	正会員	○川崎 廣貴
			清水建設㈱	正会員	河田 雅也

1. はじめに

グラウンドアンカー(以下、アンカー)には、緊張・除荷過程で自由長摩擦の影響挙動が存在するが、これを考慮した アンカー定着設計方法が未だに確立しておらず、解決すべき課題となっている。

ここでは、アンカー自由長摩擦を考慮したアンカー力設計モデルと緊張除荷挙動解析式を構築し、長尺アンカー施工 の現場データ1)をもとにパラメータ実測式を求め、アンカーリラクセーションや地盤クリープを考慮して、アンカー定 着設計方法を新たに考案したので、その内容を報告する。

2. アンカー自由長摩擦を考慮したアンカー力設計モデル

アンカーは、テンドン(PC 鋼より線束)・頭部・自由長・アンカー体の部位からなり、頭部のテンドンは定着具で受圧体 に定着し、頭部との正対側はテンドンをアンカー体で地盤固着している。その間の自由長は、テンドンがシース被覆で 伸縮可能状態であり、頭部でテンドンを緊張・定着することで、定着具とアンカー体間にアンカー力(プレストレス)が 作用する。アンカー体は、テンドンがグラウトを介して地盤に固着し、

アンカー力をせん断伝達する機能を有する。

自由長摩擦は、自由長内グラウト拘束に伴うテンドン・シース間摩 擦であり、この支配因子は、自由長部の長さ摩擦、アンカー削孔曲り、 テンドン挿入時たわみとケーシング引抜時回転の4種類である。本摩 擦により、アンカー緊張過程で伸び変位が小さくなる。アンカー除荷 過程では反転摩擦挙動になることから、地盤クリープ変位などによる プレストレス低下量はやや急勾配の非線形での減少挙動になる。

図-1は、アンカー緊張除荷挙動の事例として、緊張力の多段サイク ル載荷の適正試験結果を示したものである。同図の最終サイクルの緊 張除荷挙動に着目すると、起点 stp.0(δ₀,P₀)⇒最大点 stp.i(δ_i,P_i)⇒終点 $stp.Or(\delta_{0r}, P_{0r})$ に見られるように、摩擦影響は緊張除荷でループ挙動に

なることが分かる。特に、最大点から除荷側の緊張力低 下は大きな剛性勾配になり、アンカー初期緊張や定着後 のプレストレス低下量が大きくなるので、設計供用期間 で適正なプレストレスを永続的に保持するためには、こ の影響を考慮することが重要になる。

図-2 に、自由長摩擦考慮のアンカー力設計モデルを 示す。ここで、自由長摩擦がアンカー長方向に一定と考 えると、アンカー体側のアンカー力 Pil は頭部アンカー 力 P_{i0} から低下した、 $P_{il} = \kappa_f \cdot P_{i0}$ と表せる。 κ_f は、アン カー力伝達係数と定義する、≦1.0の係数である。同図 から頭部の緊張過程のアンカー緊張変位 δt は緊張摩擦 剛性 K_f を用いて式(1)で表せる。

除荷過程は、図-1の最大点から終点ま でをアンカー力 Pの3次曲線で表し、除 荷変位 δr は式(2)で表す。同式の未定係 数 A1~A3 は、上除荷剛性 Kr1·下除荷剛 性 *K*_r₀·終点(δ_{0r},*P*_{0r})が既知なので、式(5) ~(10)で求まる。図-3の現場データの近 似から、 $\kappa_f \cdot S_{rl} \cdot S_{r0}$ のパラメータ実測式 が式(11)~(13)で求められる。

以上より、設計モデルの緊張除荷挙動 解析式の式(1)、(2)が確定できる。

stp.i($\delta_v P_i$) 🔺

:上除荷剛性

1100

1000

900

KAWASAKI Hirotaka Kowa Sangyo Corp. KAWATA Masaya Shimizu Corp.

3. アンカー定着設計方法

アンカー緊張・定着による定着プレストレス P_t は、図-4に示すように、設計アンカー力 T_d 以上の 永続プレストレス P_∞ をもとに、地盤クリープ低下 力 ΔP_c とリラクセーション低下力 ΔP_r を割増した 式(14)で求める。くさび定着の場合の初期緊張力 P_i は、セットロス ΔP_{st} を割増して式(18)で求める。

上記の $P_{\infty} \cdot P_i \cdot P_i d$ 、同図の起点・終点が既知、最 大点で式(1)、(2)が一致という制約条件のもとで、 緊張除荷挙動曲線上に存在する解として求めるこ とに帰着する。これらは、式(1)(2)、式(14)~(19) により数値的に一意に定まらないので永続プレス トレス P_{∞} を開始点、起点・終点が既知点とした緊 張除荷挙動曲線上での多重収束解析にて求める。

表-1 に多重収束解析の *P*_t, *P*_i求解結果の事例、 図-5 に求解した緊張除荷挙動曲線と *P*_t, *P*_iを示す。

本アンカー定着設計方法により、設計段階でア ンカー自由長毎の定着プレストレス P_iなどが設定 可能になることから、保全段階での適正なプレス トレス保持が可能になると考える。

■アンカーカ Pの緊張除荷挙動の解析式

$\delta_t = \delta_0 + (P - P_0)/K_f$	···(1)
$\delta_r = P/K_r(P) = \delta_i + A_1 \cdot (P - P_i) + A_2 \cdot (P - P_i)^2 + A_3 \cdot (P - P_i)^3$	•••(2)
$K_{f}=2.0 \cdot A \cdot E/\{L_{fp} \cdot (1+\kappa_{f})+\kappa_{f}^{2} \cdot L_{fA0}\}$	•••(3)
$L_{fA0} = P_{mh} / min(\tau_{by} \cdot U, \tau_g \cdot \pi \cdot D_A)$	•••(4)
$A_1 = 1.0/(\alpha_1 \cdot K_{rl})$	···(5)
$A_2 = 0.5 \cdot \{ (1.0/(\alpha_0 \cdot K_{r0}) - 1.0/(\alpha_1 \cdot K_{r1})) / (P_{0r} - P_i) - 3.0 \cdot A_3 (P_{0r} - P_i) \}$	•••(6)
$A_{3} = \{ (P_{0r} - P_{i}) \cdot (1.0/(\alpha_{0} \cdot K_{r0}) + 1.0/(\alpha_{1} \cdot K_{r1})) - 2.0 \cdot (\delta_{0r} - \delta_{i}) \} / (P_{0r} - P_{i})^{3} $	•••(7)
$K_{rl} = S_{rl} \cdot K_e$	•••(8)
$K_{r0}=S_{r0} \cdot K_e$	•••(9)
$K_e = A \cdot E/(L_{fp} + 0.5 \cdot L_{fA0})$	•••(10)
$\kappa_f = min\{exp(-0.004 \cdot L_f), 1.0 + 0.00012 \cdot L_f \cdot (1.0 - L_f)\}$	•••(11)
$S_{rI} = 1.0 + 0.155 \cdot L_f$	•••(12)
$S_{r0} = 0.9$	•••(13)

ここに、

 δ_t :緊張変位、 δ_r :除荷変位、 δ_0 :起点変位、 P_0 :起点アンカーカ、 δ_i :最 大点変位、 P_i :最大点アンカーカ、 δ_0 , 終点変位、 P_0 :終点アンカー カ、 K_f :緊張摩擦剛性(kN/mm)、A:アンカー断面積(mm²)、E:アンカー 弾性係数(0.195MN/mm²)、 κ_f :アンカーカ伝達係数、 L_{fp} :緊張自由長 $L_{f0}+L_{f5}$ L_{f0} :緊張余長、 L_f :自由長、 L_{f40} :基本アンカー体自由長、 P_{mh} : アンカー履歴最大力、 τ_{by} :テンドングラウト降伏付着強度(N/mm²)、 τ_g : グラウト地盤摩擦強度(N/mm²)、U:テンドン見掛け周長(mm)、 D_A :アン カー体径(mm)、 K_{rl} :上除荷剛性(kN/mm)、 K_{r0} :下除荷剛性(kN/mm)、 a_l : 上剛性補正係数(2.0~5.0)、 a_0 :下剛性補正係数(0.7~1.0)、 S_{rl} :上除荷剛 性比、 S_{r0} :下除荷剛性比、 K_e :弾性剛性(kN/mm)

■定着プレストレス力 P_tの設計式

$P_t = P_{\infty} + \varDelta P_c + \varDelta P_r [P_{\infty} \ge T_d]$	···(14)
$\Delta P_{c} = K_{r}(P) \cdot P_{t} \cdot \alpha_{c} \{ A_{c} \cdot 2.8 \cdot N/0.3 \cdot (A_{c}^{0.5}/0.3)^{-3/4} \}$	•••(15)
$\Delta P_r = P_{t0} \cdot \gamma_0$	•••(16)
$\gamma_0 = r_1 \cdot P_{t0} / T_{us} \cdot (P_{t0} / T_{us} - 1.0) + r_2 [P_{t0} / T_{us} \ge 0.5, P_{t0} / T_{us} < 0.5 : =0.5]$	···(17)
$P_i = P_t + \Delta P_{st} \left[P_i \leq P_M(=\min(0.9 \cdot T_{ys}, L_A \cdot \min(\tau_{by} \cdot U, \tau_g \cdot \pi \cdot D_A)/1.25) \right]$	•••(18)
$\Delta P_{st} = K_r(P) \cdot S_t$	•••(19)
71-	

 $P_i: 定着プレストレス、<math>P_{\infty}: 永続プレストレス、: \Lambda P_c: 地盤クリープ低下力、<math>\Lambda P_r:$ リラクセーション低下力、 $P_i:$ 初期緊張力、 $\Lambda P_{st}:$ セットロス、 $T_d:$ 設計アンカー力、 $\alpha_c:$ クリープ変位係数(1.0~3.0)、 $\Lambda_c:$ 受圧体面積 (m²)、N:受圧体支持地盤 N 値、 $P_{t0}:$ リラクセーション用プレストレス、 $\gamma_0:$ 純リラクセーション率、 $T_{us}:$ テンドン極限耐力、 $T_{ys}:$ テンドン降伏耐力、 $L_d:$ アンカー体長

<i>r₁,r₂</i> :PC 鋼より線の純リラ	クセーシ	ョン係数	(下表)
PC 鋼より線の種類	r_{l}	r_2	
普通リラク PC 鋼より線	1.92	0.51	
ECF リラク PC 鋼より線	1.60	0.42	
低リラク PC 鋼より線	0.48	0.13	

表-1 多重収束解析の <i>P_t, P_i</i> 求解結果の事例						
項目	単位	変位る	アンカーカ P	摘要		
永続プレストレス P.。 点	mm,kN	144.81	710.0			
リラクセーション考慮 P。+AP, 点	mm,kN	147.37	730.4			
純リラクセーション率γ。		·	0.028			
収束判定		0.00	730.36	←710.0 (初期入力)		
受圧体地盤の心値		30				
受圧体面積A。	m^2	4.30	_			
クリープ変位係数 a。		2.00	_	1.0~3.0範囲		
地盤クリープ変位 δ_c	mm	5.52	_			
収束判定		0.00	780.18	←781.0 (初期入力)		
定着プレストレス P ₁ 点	mm,kN	152.89	780.18			
セット量 <i>S</i> ,	mm	10.0	—			
収束判定	—	0.00	946.22	⇐852.0 (初期入力)		
初期緊張力 P, 点	mm,kN	162.96	950.00	収束		
0.9×降伏耐力 T _{ys} (P _M) の照査	—	OK	≦982.8			
		【収す	ē]			

4. おわりに

アンカー自由長摩擦を考慮したアンカー力設計モデルと緊張除荷挙動解析式を構築し、これに現場データを当てはめ て、同式のパラメータ実測式を求めた。さらに、設計アンカー力をもとにした永続プレストレスから、設計供用期間の リラクセーションや地盤クリープ影響を考慮することで、設計段階で適切に割増した定着プレストレスの設計が可能に なった。この定着施工により、保全段階のアンカー力調査での過度なアンカー力低下の防止が期待できると考える。

ここでは、現場経験実務からの設計施工課題と解決法を取り上げた。本論文が何らかの参考になれば、幸甚である。 【参考文献】

1) 田久、下田、川崎、田村: グラウンドアンカー自由長部における摩擦損失、地盤工学ジャーナル Vol. 5, No. 2, pp.281-291, 2010